04. Преобразование выражений (формулы) Блок 1. ФИПИ

I) Экономика

- **1.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 5 колец.
- **2.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 11 колец.
- **3.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 6 колец.
- **4.**В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 13 колец.
- **5.**В фирме «Эх, прокачу!» стоимость поездки на такси длительностью меньше 5 минут составляет 150 рублей. Если поездка длится 5 минут или более, то её стоимость (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t- длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 10-минутной поездки.
- **6.**В фирме «Эх, прокачу!» стоимость поездки на такси длительностью меньше 5 минут составляет 150 рублей. Если поездка длится 5 минут или более, то её стоимость (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t- длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 15-минутной поездки.
- **7.**В фирме «Эх, прокачу!» стоимость поездки на такси длительностью меньше 5 минут составляет 150 рублей. Если поездка длится 5 минут или более, то её стоимость (в рублях) рассчитывается по формуле $C = 150 + 11 \cdot (t 5)$, где t длительность поездки, выраженная в минутах (t > 5). Пользуясь этой формулой, рассчитайте стоимость 12-минутной поездки.
- **8.**В фирме «Эх, прокачу!» стоимость поездки на такси длительностью меньше 5 минут составляет 150 рублей. Если поездка длится 5 минут или более, то её стоимость (в рублях) рассчитывается по формуле $C=150+11\cdot(t-5)$, где t- длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 25-минутной поездки.

II) Математика

- **9.**Площадь поверхности прямоугольного параллелепипеда с рёбрами a, b и c вычисляется по формуле S=2(ab+ac+bc). Найдите площадь поверхности прямоугольного параллелепипеда с рёбрами 2, 5 и 6.
- **10.** Площадь поверхности прямоугольного параллелепипеда с рёбрами a, b и c вычисляется по формуле S = 2(ab + ac + bc). Найдите площадь поверхности прямоугольного параллелепипеда с рёбрами 3, 4 и 6.
- **11.** Площадь поверхности прямоугольного параллелепипеда с рёбрами a, b и c вычисляется по формуле S=2(ab+ac+bc). Найдите площадь поверхности прямоугольного параллелепипеда с рёбрами 5, 6 и 20.
- **12.** Площадь поверхности прямоугольного параллелепипеда с рёбрами a, b и c вычисляется по формуле S = 2(ab + ac + bc). Найдите площадь поверхности прямоугольного параллелепипеда с рёбрами 2, 4 и 6.
- **13.** Площадь трапеции вычисляется по формуле $S = \frac{a+b}{2} \cdot h$, где a и b основания трапеции, h её высота. Пользуясь этой формулой, найдите S, если a = 6, b = 4 и h = 6.
- **14.** Площадь трапеции вычисляется по формуле $S = \frac{a+b}{2} \cdot h$, где a и b основания трапеции, h её высота. Пользуясь этой формулой, найдите S, если $a=3,\ b=8$ и h=4.
- **15.** Площадь трапеции вычисляется по формуле $S = \frac{a+b}{2} \cdot h$, где a и b основания трапеции, h её высота. Пользуясь этой формулой, найдите S, если a = 4, b = 9 и h = 2.
- **16.** Площадь трапеции вычисляется по формуле $S = \frac{a+b}{2} \cdot h$, где a и b основания трапеции, h её высота. Пользуясь этой формулой, найдите S, если $a=5,\ b=3$ и h=6.
- **17.** Теорему косинусов можно записать в виде $\cos \gamma = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а γ угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \gamma$, если a = 3, b = 8 и c = 7.
- **18.** Теорему косинусов можно записать в виде $\cos \gamma = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а γ угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \gamma$, если a = 5, b = 6 и c = 7.

- **19.** Теорему косинусов можно записать в виде $\cos \gamma = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а γ угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \gamma$, если a = 5, b = 8 и c = 9.
- **20.** Теорему косинусов можно записать в виде $\cos \gamma = \frac{a^2 + b^2 c^2}{2ab}$, где a, b и c стороны треугольника, а γ угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \gamma$, если a = 7, b = 10 и c = 11.
- **21.** Если p_1 , p_2 и p_3 различные простые числа, то сумма всех делителей числа $p_1 \cdot p_2 \cdot p_3$ равна $(p_1+1)(p_2+1)(p_3+1)$. Найдите сумму всех делителей числа $105=3\cdot5\cdot7$.
- **22.** Если p_1 , p_2 и p_3 различные простые числа, то сумма всех делителей числа $p_1 \cdot p_2 \cdot p_3$ равна $(p_1+1)(p_2+1)(p_3+1)$. Найдите сумму всех делителей числа $114=2\cdot 3\cdot 19$.
- **23.** Если p_1 , p_2 и p_3 различные простые числа, то сумма всех делителей числа $p_1 \cdot p_2 \cdot p_3$ равна $(p_1+1)(p_2+1)(p_3+1)$. Найдите сумму всех делителей числа $165=3\cdot 5\cdot 11$.
- **24.** Если p_1 , p_2 и p_3 различные простые числа, то сумма всех делителей числа $p_1 \cdot p_2 \cdot p_3$ равна $(p_1+1)(p_2+1)(p_3+1)$. Найдите сумму всех делителей числа $130=2\cdot 5\cdot 13$.
- **25.** Площадь треугольника со сторонами a, b, c можно найти по формуле Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$. Найдите площадь треугольника, если длины его сторон равны 4, 13, 15.
- **26.** Площадь треугольника со сторонами a, b, c можно найти по формуле Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$. Найдите площадь треугольника, если длины его сторон равны 7, 15, 20.
- **27.** Площадь треугольника со сторонами a, b, c можно найти по формуле Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$. Найдите площадь треугольника, если длины его сторон равны 10, 17, 21.
- **28.** Площадь треугольника со сторонами a, b, c можно найти по формуле Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$. Найдите площадь треугольника, если длины его сторон равны 11, 13, 20.
- **29.** Среднее геометрическое трёх чисел a, b и c вычисляется по формуле $g = \sqrt[3]{abc}$. Вычислите среднее геометрическое чисел 2, 4, 27.

- **30.** Среднее геометрическое трёх чисел a, b и c вычисляется по формуле $g = \sqrt[3]{abc}$. Вычислите среднее геометрическое чисел 5, 25, 27.
- **31.** Среднее геометрическое трёх чисел a, b и c вычисляется по формуле $g = \sqrt[3]{abc}$. Вычислите среднее геометрическое чисел 4, 8, 16.
- **32.** Среднее геометрическое трёх чисел a, b и c вычисляется по формуле $g = \sqrt[3]{abc}$. Вычислите среднее геометрическое чисел 2, 27, 32.
- **33.** Среднее квадратичное трёх чисел a, b и c вычисляется по формуле $q = \sqrt{\frac{a^2 + b^2 + c^2}{3}}$ м. Найдите среднее квадратичное чисел $2, \sqrt{7}$ и 17.
- **34.** Среднее квадратичное трёх чисел a, b и c вычисляется по формуле $q = \sqrt{\frac{a^2 + b^2 + c^2}{3}}$. Найдите среднее квадратичное чисел 3, 4 и $\sqrt{23}$.
- **35.** Среднее квадратичное трёх чисел a, b и c вычисляется по формуле $q = \sqrt{\frac{a^2 + b^2 + c^2}{3}}$. Найдите среднее квадратичное чисел $\sqrt{2}$, 5 и 9.
- **36.** Среднее квадратичное трёх чисел a, b и c вычисляется по формуле $q = \sqrt{\frac{a^2 + b^2 + c^2}{3}}$. Найдите среднее квадратичное чисел $\sqrt{2}$, 3 и 17.
- **37.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a = 5, b = 3\sqrt{3}$ и c = 10.
- **38.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a=4,\ b=2\sqrt{6}$ и c=8.
- **39.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a = 6, b = 4\sqrt{2}$ и c = 10.
- **40.** Длина медианы m_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 c^2}}{2}$. Найдите медиану m_c , если $a = 4, b = 3\sqrt{2}$ и c = 2.

- **41.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $l_c=\frac{1}{a+b}\sqrt{ab((a+b)^2-c^2)}$. Найдите длину биссектрисы l_c , если a=3,b=6 и $c=3\sqrt{7}$.
- **42.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $l_c = \frac{1}{a+b} \sqrt{ab((a+b)^2-c^2)}$. Найдите длину биссектрисы l_c , если a=3, b=12 и $c=5\sqrt{5}$.
- **43.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $l_c=\frac{1}{a+b}\sqrt{ab((a+b)^2-c^2)}$. Найдите длину биссектрисы l_c , если a=4,b=8 и $c=6\sqrt{2}$.
- **44.** Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами $a,\ b$ и c, вычисляется по формуле $l_c=\frac{1}{a+b}\sqrt{ab((a+b)^2-c^2)}$. Найдите длину биссектрисы l_c , если a=8,b=12 и $c=5\sqrt{10}$.
- **45.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \cdot \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если d = 6 и $\sin \alpha = \frac{1}{3}$.
- **46.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \cdot \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если d = 5 и $\sin \alpha = \frac{2}{5}$.
- **47.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \cdot \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если d = 4 и $\sin \alpha = \frac{1}{2}$.
- **48.** Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \cdot \sin \alpha}{2}$, где d длина диагонали, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если d = 3 и $\sin \alpha = \frac{2}{3}$.

- **49.** Среднее гармоническое трёх чисел a, b и c вычисляется по формуле $h = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1}$. Найдите среднее гармоническое чисел $\frac{1}{2}$, $\frac{1}{5}$ и 1.
- **50.** Среднее гармоническое трёх чисел a, b и c вычисляется по формуле $h = \left(\frac{1/a + 1/b + 1/c}{3}\right)^{-1}$. Найдите среднее гармоническое чисел $\frac{1}{4}$, $\frac{1}{5}$ и $\frac{1}{6}$.
- **51.** Среднее гармоническое трёх чисел a, b и c вычисляется по формуле $h = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1}$. Найдите среднее гармоническое чисел $\frac{1}{2}$, $\frac{1}{11}$ и $\frac{1}{17}$.
- **52.** Среднее гармоническое трёх чисел a, b и c вычисляется по формуле $h = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1}$. Найдите среднее гармоническое чисел $\frac{1}{3}$, $\frac{1}{4}$ и 1.
- **53.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите R, если a = 10 и $\sin\alpha = \frac{1}{3}$.
- **54.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите R, если a = 6 и $\sin\alpha = \frac{1}{7}$.
- **55.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите R, если a = 8 и $\sin\alpha = \frac{1}{5}$.
- **56.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где α сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите R, если α = 4 и $\sin\alpha$ = $\frac{1}{4}$.
- **57.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите a, если R = 9 и $\sin\alpha = \frac{1}{3}$.

- **58.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите a, если R = 15 и $\sin\alpha = \frac{4}{5}$.
- **59.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите a, если R = 14 и $\sin\alpha = \frac{5}{7}$.
- **60.** Радиус окружности, описанной около треугольника, можно вычислить по формуле $R = \frac{a}{2\sin\alpha}$, где a сторона, а α противолежащий ей угол треугольника. Пользуясь этой формулой, найдите a, если R = 10 и $\sin\alpha = \frac{3}{20}$.
- **61.** Объём прямоугольного параллелепипеда вычисляется по формуле V = abc, где a, b и c длины трёх его рёбер, выходящих из одной вершины. пользуясь этой формулой, найдите a, если V = 30, b = 4 и c = 2,5.
- **62.** Объём прямоугольного параллелепипеда вычисляется по формуле V = abc, где a, b и c длины трёх его рёбер, выходящих из одной вершины. пользуясь этой формулой, найдите a, если V = 55, b = 2 и c = 5,5.
- **63.** Объём прямоугольного параллелепипеда вычисляется по формуле V = abc, где a, b и c длины трёх его рёбер, выходящих из одной вершины. пользуясь этой формулой, найдите a, если V = 70, b = 5 и c = 3,5.
- **64.** Объём прямоугольного параллелепипеда вычисляется по формуле V = abc, где a, b и c длины трёх его рёбер, выходящих из одной вершины. пользуясь этой формулой, найдите a, если V = 105, b = 6 и c = 2,5.
- **65.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите площадь S, если a = 11, b = 25, c = 30 и R = $\frac{125}{8}$.
- **66.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите площадь S, если a = 15, b = 28, c = 41 и R = $\frac{205}{6}$.

- **67.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите площадь S, если a = 11, b = 13, c = 20 и R = $\frac{65}{6}$.
- **68.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите площадь S, если a = 7, b = 15, c = 20 и R = $\frac{25}{2}$.
- **69.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите b, если a = 9, c = 10, S = 36 и R = $\frac{85}{8}$.
- **70.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите b, если a = 9, c = 12, S = 84 и R = $\frac{36}{7}$.
- **71.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите b, если a = 13, c = 15, S = 84 и R = $\frac{65}{8}$.
- **72.** Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c стороны треугольника, а R радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите b, если a = 10, c = 11, S = 55 и R = $\frac{13}{2}$.
- **73.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если $d_1 = 4$, $d_2 = 7$, а $\sin \alpha = \frac{2}{7}$.

- **74.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если $d_1 = 6$, $d_2 = 12$, а $\sin \alpha = \frac{5}{9}$.
- **75.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если $d_1 = 4$, $d_2 = 3$, а $\sin \alpha = \frac{5}{6}$.
- **76.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите площадь S, если $d_1 = 6$, $d_2 = 14$, а $\sin \alpha = \frac{6}{7}$.
- **77.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если d_1 = 16, $\sin \alpha = \frac{2}{5}$, а S = 12.8.
- **78.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если $d_1 = 13$, $\sin \alpha = \frac{3}{13}$, а S = 25,5.
- **79.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если d_2 = 9, $\sin \alpha = \frac{5}{8}$, а S = 56,25.
- **80.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{1}{2} d_1 d_2 \sin \alpha$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_1 , если d_2 = 11, $\sin \alpha = \frac{7}{12}$, а S = 57,75.

- **81.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь S, если b = 18, c = 16 и $\sin \alpha = \frac{1}{3}$.
- **82.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь S, если b = 14, c = 12 и $\sin \alpha = \frac{1}{3}$.
- **83.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь S, если b = 12, c = 15 и $\sin \alpha = \frac{1}{3}$.
- **84.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите площадь S, если b = 16, c = 9 и $\sin \alpha = \frac{1}{3}$.
- **85.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите величину $\sin \alpha$, если b = 10, c = 5 и S = 20.
- **86.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите величину $\sin \alpha$, если b = 5, c = 14 и S = 21.
- **87.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите величину $\sin \alpha$, если b = 4, c = 15 и S = 27.
- **88.** Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bc \cdot \sin \alpha$, где b и c две стороны треугольника, а α угол между ними. Пользуясь этой формулой, найдите величину $\sin \alpha$, если b=6, c=20 и S=42.
- **89.** Теорему синусов можно записать в виде $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину $\sin\alpha$, если a = 13, b = 5, $\sin\beta = \frac{1}{26}$.

- **90.** Теорему синусов можно записать в виде $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину $\sin \alpha$, если a = 51, b = 25, $\sin \beta = \frac{3}{17}$.
- **91.** Теорему синусов можно записать в виде $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину $\sin \alpha$, если a = 27, b = 20, $\sin \beta = \frac{2}{3}$.
- **92.** Теорему синусов можно записать в виде $\frac{\alpha}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину $\sin \alpha$, если a = 10, b = 9, $\sin \beta = \frac{18}{25}$.
- **93.** Теорему синусов можно записать в виде $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите a, если b=15, $\sin\alpha = \frac{1}{5}$ и $\sin\beta = \frac{1}{4}$.
- **94.** Теорему синусов можно записать в виде $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите a, если b=14, $\sin\alpha = \frac{3}{7}$ и $\sin\beta = \frac{1}{3}$.
- **95.** Теорему синусов можно записать в виде $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите a, если b=16, $\sin \alpha = \frac{1}{4}$ и $\sin \beta = \frac{1}{5}$.

- **96.** Теорему синусов можно записать в виде $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta}$, где a и b две стороны треугольника, а α и β углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите a, если b=12, $\sin\alpha = \frac{1}{6}$ и $\sin\beta = \frac{1}{5}$.
- **97.** Сумма углов выпуклого многоугольника вычисляется по формуле $\Sigma = (n-2)\pi$, где n количество его углов. Пользуясь этой формулой, найдите n, если $\Sigma = 6\pi$.
- **98.** Сумма углов выпуклого многоугольника вычисляется по формуле $\Sigma = (n-2)\pi$, где n количество его углов. Пользуясь этой формулой, найдите n, если $\Sigma = 15\pi$.
- **99.** Сумма углов выпуклого многоугольника вычисляется по формуле $\Sigma = (n-2)\pi$, где n количество его углов. Пользуясь этой формулой, найдите n, если $\Sigma = 9\pi$.
- **100.** Сумма углов выпуклого многоугольника вычисляется по формуле $\Sigma = (n-2)\pi$, где n количество его углов. Пользуясь этой формулой, найдите n, если $\Sigma = 11\pi$.
- **101.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите r, если a = 15, b = 112 и c = 113.
- **102.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите r, если a = 60, b = 91 и c = 109.
- **103.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите r, если a = 24, b = 45 и c = 51.
- **104.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите r, если a = 13, b = 84 и c = 85.
- **105.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите c, если a = 8, b = 15 и r = 3.

- **106.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите c, если a = 7, b = 24 и r = 3.
- **107.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите c, если a = 12, b = 35 и r = 5.
- **108.** Радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле $r = \frac{a+b-c}{2}$, где a и b катеты, а c гипотенуза. Пользуясь этой формулой, найдите c, если a = 20, b = 21 и r = 6.
- **109.** Площадь треугольника можно вычислить по формуле $S = \frac{(a+b+c)r}{2}$, где a, b и c стороны треугольника, а r радиус окружности, вписанной в этот треугольник. Пользуясь этой формулой, найдите b, если a = 7, c = 9, S = $14\sqrt{5}$ и r = $\sqrt{5}$.
- **110.** Площадь треугольника можно вычислить по формуле $S = \frac{(a+b+c)\,r}{2}$, где a,b и c стороны треугольника, а r радиус окружности, вписанной в этот треугольник. Пользуясь этой формулой, найдите b, если a = 7, c = 8, S = $10\sqrt{3}$ и r = $\sqrt{3}$.
- **111.** Площадь треугольника можно вычислить по формуле $S = \frac{(a+b+c)\,r}{2}$, где a,b и c стороны треугольника, а r радиус окружности, вписанной в этот треугольник. Пользуясь этой формулой, найдите найдите b, если a = 8, c = 12, S = 15 $\sqrt{7}$ и r = $\sqrt{7}$.
- **112.** Площадь треугольника можно вычислить по формуле $S = \frac{(a+b+c)r}{2}$, где a, b и c стороны треугольника, а r радиус окружности, вписанной в этот треугольник. Пользуясь этой формулой, найдите найдите b, если a=11, c=14, $S=44\sqrt{3}$ и $r=2\sqrt{3}$.

III) Физика

113. Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n – число шагов, l – длина шага. Какое расстояние прошёл человек, если l = 70 см, n = 1900? Ответ выразите в километрах.

- **114.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 80 см, n = 1100? Ответ выразите в километрах.
- **115.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 60 см, n = 1400? Ответ выразите в километрах.
- **116.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 50 см, n = 1300? Ответ выразите в километрах.
- **117.** Чтобы перевести температуру из шкалы Цельсия в шкалу Фаренгейта, пользуются формулой t_F =1,8 t_C +32, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 23 градуса по шкале Цельсия?
- **118.** Чтобы перевести температуру из шкалы Цельсия в шкалу Фаренгейта, пользуются формулой t_F =1,8 t_C +32, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 31 градус по шкале Цельсия?
- **119.** Чтобы перевести температуру из шкалы Цельсия в шкалу Фаренгейта, пользуются формулой t_F =1,8 t_C +32, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует –16 градусов по шкале Цельсия?
- **120.** Чтобы перевести температуру из шкалы Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует –44 градуса по шкале Цельсия?
- **121.** Перевести температуру из шкалы Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах по шкале Цельсия, t_F температура в градусах по шкале Фаренгейта. Скольким градусам по шкале Цельсия соответствует 5 градусов по шкале Фаренгейта?
- **122.** Перевести температуру из шкалы Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах по шкале Цельсия, t_F температура в градусах по шкале Фаренгейта. Скольким градусам по шкале Цельсия соответствует 86 градусам по шкале Фаренгейта?

- **123.** Перевести температуру из шкалы Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах по шкале Цельсия, t_F температура в градусах по шкале Фаренгейта. Скольким градусам по шкале Цельсия соответствует 14 градусам по шкале Фаренгейта?
- **124.** Перевести температуру из шкалы Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах по шкале Цельсия, t_F температура в градусах по шкале Фаренгейта. Скольким градусам по шкале Цельсия соответствует 95 градусов по шкале Фаренгейта?
- **125.** Количество теплоты (в джоулях), полученное однородным телом при нагревании, вычисляется по формуле $Q = cm(t_2 t_1)$, где c удельная тепло-ёмкость (в $\frac{\mathcal{J}_{\mathsf{K}}}{\mathsf{K}\Gamma \cdot \mathsf{K}}$), m масса тела (в килограммах), t_1 начальная температура тела (в кельвинах), а t_2 конечная температура тела (в кельвинах). Пользуясь этой формулой, найдите Q (в джоулях), если t_2 = 608 K , c = 600 $\frac{\mathcal{J}_{\mathsf{K}}}{\mathsf{K}\Gamma \cdot \mathsf{K}}$, m = 3 $\mathsf{K}\Gamma$ и t_1 = 603 K .
- **126.** Количество теплоты (в джоулях), полученное однородным телом при нагревании, вычисляется по формуле $Q = cm(t_2 t_1)$, где c удельная тепло-ёмкость (в $\frac{Д_{ж}}{\kappa_{\Gamma} \cdot K}$), m масса тела (в килограммах), t_1 начальная температура тела (в кельвинах), а t_2 конечная температура тела (в кельвинах). Пользуясь этой формулой, найдите Q (в джоулях), если t_2 = 509 K, c = 400 $\frac{Д_{ж}}{\kappa_{\Gamma} \cdot K}$, m = 2 κ_{Γ} и t_1 = 505 K.
- **127.** Количество теплоты (в джоулях), полученное однородным телом при нагревании, вычисляется по формуле $Q = cm(t_2 t_1)$, где c удельная тепло-ёмкость (в $\frac{\mathcal{J}_{\mathsf{Kr} \cdot \mathsf{K}}}{\mathsf{Kr} \cdot \mathsf{K}}$), m масса тела (в килограммах), t_1 начальная температура тела (в кельвинах), а t_2 конечная температура тела (в кельвинах). Пользуясь этой формулой, найдите Q (в джоулях), если t_2 = 412 K , c = 300 $\frac{\mathcal{J}_{\mathsf{Kr} \cdot \mathsf{K}}}{\mathsf{Kr} \cdot \mathsf{K}}$, m = 3 Kr и t_1 = 407 K .
- **128.** Количество теплоты (в джоулях), полученное однородным телом при нагревании, вычисляется по формуле $Q = cm(t_2 t_1)$, где c удельная тепло-ёмкость (в $\frac{\mathcal{J}_{\mathsf{K}}}{\mathsf{K}\mathsf{F}\cdot\mathsf{K}}$), m масса тела (в килограммах), t_1 начальная температура тела (в кельвинах), а t_2 конечная температура тела (в кельвинах). Пользуясь этой формулой, найдите Q (в джоулях), если t_2 = 657 K , c = 500 $\frac{\mathcal{J}_{\mathsf{K}}}{\mathsf{K}\mathsf{F}\cdot\mathsf{K}}$, m = 4 $\mathsf{K}\mathsf{F}$ и t_1 = 653 K .

- **129.** Ускорение тела (в м/с²) при равномерном движении по окружности можно вычислить по формуле $a = \omega^2 R$, где ω угловая скорость вращения (в с¹), а R радиус окружности (в метрах). Пользуясь этой формулой, найдите a (в м/с²), если R = 2.5 м и $\omega = 20$ с¹.
- **130.** Ускорение тела (в м/с²) при равномерном движении по окружности можно вычислить по формуле $a = \omega^2 R$, где ω угловая скорость вращения (в с¹), а R радиус окружности (в метрах). Пользуясь этой формулой, найдите a (в м/с²), если R = 0.5 м и $\omega = 12$ с¹.
- **131.** Ускорение тела (в м/с²) при равномерном движении по окружности можно вычислить по формуле $a = \omega^2 R$, где ω угловая скорость вращения (в с¹), а R радиус окружности (в метрах). Пользуясь этой формулой, найдите a (в м/с²), если R = 7 м и $\omega = 5$ с¹.
- **132.** Ускорение тела (в м/с²) при равномерном движении по окружности можно вычислить по формуле $a = \omega^2 R$, где ω угловая скорость вращения (в с¹), а R радиус окружности (в метрах). Пользуясь этой формулой, найдите a (в м/с²), если R = 4 м и ω = 7 с¹.
- **133.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = I^2Rt$, где I сила тока (в амперах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 5 с, I = 2 A и R = 13 Ом.
- **134.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = I^2Rt$, где I сила тока (в амперах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t=3 с, I=5 A и R=10 Ом.
- **135.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = I^2Rt$, где I сила тока (в амперах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 2 с, I = 6 A и R = 5 Ом.
- **136.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = I^2Rt$, где I сила тока (в амперах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 10 с, I = 4 A и R = 2 Ом.
- **137.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = R = 8 Ом и U = 16 В.

- **138.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 6 Ом и U = 12 В.
- **139.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 7 Ом и U = 14 В.
- **140.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 6 Ом и U = 18 В.
- **141.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t=8 с, U = 6 B и R = 2 Ом.
- **142.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t=9 с, U=8 B и R=12 Ом.
- **143.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 15 с, U = 6 B и R = 9 Ом.
- **144.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 18 с, U = 7 B и R = 14 Ом.
- **145.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в м/с). Пользуясь этой формулой, найдите E (в джоулях), если v = 4 м/с и m = 10 кг.
- **146.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в м/с). Пользуясь этой формулой, найдите E (в джоулях), если v = 5 м/с и m = 12 кг.

- **147.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в м/с). Пользуясь этой формулой, найдите E (в джоулях), если v = 4 м/с и m = 9 кг.
- **148.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в м/с). Пользуясь этой формулой, найдите E (в джоулях), если v = 3 м/с и m = 14 кг.
- **149.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{q^2}{2C}$, где C ёмкость конденсатора (в Ф), а q заряд на одной обкладке конденсатора (в Кл). Найдите W (в Дж), если $C = 5 \cdot 10^{-4}$ Ф и q = 0.07 Кл.
- **150.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{q^2}{2C}$, где C ёмкость конденсатора (в Ф), а q заряд на одной обкладке конденсатора (в Кл). Найдите W (в Дж), если $C = 5 \cdot 10^{-4}$ Ф и q = 0.05 Кл.
- **151.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{q^2}{2C}$, где C ёмкость конденсатора (в Ф), а q заряд на одной обкладке конденсатора (в Кл). Найдите W (в Дж), если $C = 5 \cdot 10^{-4}$ Ф и q = 0.09 Кл.
- **152.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{q^2}{2C}$, где C ёмкость конденсатора (в Ф), а q заряд на одной обкладке конденсатора (в Кл). Найдите W (в Дж), если $C = 5 \cdot 10^{-4}$ Ф и q = 0.06 Кл.
- **153.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{CU^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите W (в Дж), если $C = 2 \cdot 10^{-4}$ Ф и U = 14 В.
- **154.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{CU^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите W (в Дж), если $C = 2 \cdot 10^{-4}$ Ф и U = 13 В.
- **155.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{CU^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите W (в Дж), если C=10 $^{-4}$ Ф и U=14 В.

- **156.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{CU^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите W (в Дж), если $C = 10^{-4}$ Ф и U = 12 В.
- **157.** Скорость камня (в м/с), падающего с высоты h (в м), в момент удара о землю можно найти по формуле $v = \sqrt{2gh}$. Найдите скорость (в м/с), с которой ударится о землю камень, падающий с высоты 1,6 м. Считайте, что ускорение свободного падения g равно 9,8 м/с².
- **158.** Скорость камня (в м/с), падающего с высоты h (в м), в момент удара о землю можно найти по формуле $v = \sqrt{2gh}$. Найдите скорость (в м/с), с которой ударится о землю камень, падающий с высоты 3,6 м. Считайте, что ускорение свободного падения g равно 9,8 м/с².
- **159.** Скорость камня (в м/с), падающего с высоты h (в м), в момент удара о землю можно найти по формуле $v = \sqrt{2gh}$. Найдите скорость (в м/с), с которой ударится о землю камень, падающий с высоты 22,5 м. Считайте, что ускорение свободного падения g равно $9.8 \,\mathrm{m/c^2}$.
- **160.** Скорость камня (в м/с), падающего с высоты h (в м), в момент удара о землю можно найти по формуле $v = \sqrt{2gh}$. Найдите скорость (в м/с), с которой ударится о землю камень, падающий с высоты 62,5 м. Считайте, что ускорение свободного падения g равно 9,8 м/с².
- **161.** Закон Гука можно записать в виде F = kx, где F сила (в ньютонах), с которой растягивают пружину, x абсолютное удлинение пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если F = 80 H и k = 5 H/м.
- **162.** Закон Гука можно записать в виде F = kx, где F сила (в ньютонах), с которой растягивают пружину, x абсолютное удлинение пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если F = 38 H и k = 2 H/м.
- **163.** Закон Гука можно записать в виде F = kx, где F сила (в ньютонах), с которой растягивают пружину, x абсолютное удлинение пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если F = 42 H и k = 7 H/м.
- **164.** Закон Гука можно записать в виде F = kx, где F сила (в ньютонах), с которой растягивают пружину, x абсолютное удлинение пружины (в метрах), а k коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если F = 51 H и k = 3 H/m.

- **165.** Второй закон Ньютона можно записать в виде F = ma, где F сила (в ньютонах), действующая на тело, m его масса (в килограммах), a ускорение (в м/с²), с которым движется тело. Найдите m (в килограммах), если F = 195 Н и a = 39 м/с².
- **166.** Второй закон Ньютона можно записать в виде F = ma, где F сила (в ньютонах), действующая на тело, m его масса (в килограммах), a ускорение (в м/с²), с которым движется тело. Найдите m (в килограммах), если F = 153 Н и a = 17 м/с².
- **167.** Второй закон Ньютона можно записать в виде F = ma, где F сила (в ньютонах), действующая на тело, m его масса (в килограммах), a ускорение (в м/с²), с которым движется тело. Найдите m (в килограммах), если F = 296 Н и a = 37 м/с².
- **168.** Второй закон Ньютона можно записать в виде F = ma, где F сила (в ньютонах), действующая на тело, m его масса (в килограммах), a ускорение (в м/с²), с которым движется тело. Найдите m (в килограммах), если F = 188 Н и a = 47 м/с².
- **169.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 18 Ом и I = 2,5 А.
- **170.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 14 Ом и I = 4 А.
- **171.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 16 Ом и I = 5,5 А.
- **172.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R = 12 Ом и I = 7 А.
- **173.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите R (в омах), если P = 128 Вт и I = 4 А.
- **174.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите R (в омах), если P = 144 Вт и I = 6 A.
- **175.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите R (в омах), если P = 43,75 Вт и I = 2,5 A.

- **176.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите R (в омах), если P = 61,25 Вт и I = 3,5 A.
- **177.** Потенциальная энергия тела (в джоулях) в поле тяготения Земли вблизи её поверхности вычисляется по формуле E = mgh, где m масса тела (в килограммах), g ускорение свободного падения (в м/с²), а h высота (в метрах), на которой находится это тело относительно поверхности. Пользуясь этой формулой, найдите m (в килограммах), если g = 9,8 м/с², h = 2 м, а E = 98 Дж.
- **178.** Потенциальная энергия тела (в джоулях) в поле тяготения Земли вблизи её поверхности вычисляется по формуле E = mgh, где m масса тела (в килограммах), g ускорение свободного падения (в м/с²), а h высота (в метрах), на которой находится это тело относительно поверхности. Пользуясь этой формулой, найдите m (в килограммах), если g = 9,8 м/с², h = 5 м, а E = 196 Дж.
- **179.** Потенциальная энергия тела (в джоулях) в поле тяготения Земли вблизи её поверхности вычисляется по формуле E = mgh, где m масса тела (в килограммах), g ускорение свободного падения (в м/с²), а h высота (в метрах), на которой находится это тело относительно поверхности. Пользуясь этой формулой, найдите m (в килограммах), если g = 9,8 м/с², h = 0,5 м, а E = 49 Дж.
- **180.** Потенциальная энергия тела (в джоулях) в поле тяготения Земли вблизи её поверхности вычисляется по формуле E = mgh, где m масса тела (в килограммах), g ускорение свободного падения (в м/с²), а h высота (в метрах), на которой находится это тело относительно поверхности. Пользуясь этой формулой, найдите m (в килограммах), если g = 9,8 м/с², h = 5 м, а E = 147 Дж.