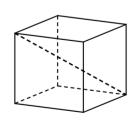
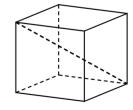
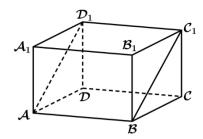
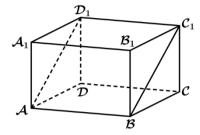
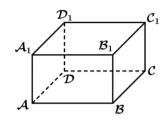

03. Стереометрия Блок 1. ФИПИ

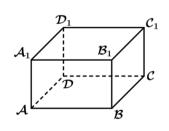

<u>I)</u> Параллелепипед



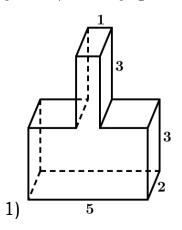


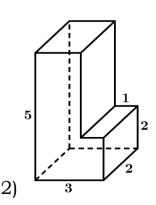


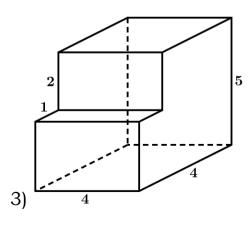




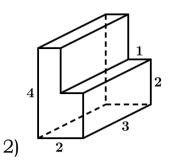
- **1.**В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что DD_1 =2, C_1D_1 =6, B_1C_1 =3. Найдите длину диагонали AC_1 .
- **2.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что BB_1 =16, A_1B_1 =2, A_1D_1 =8. Найдите длину диагонали AC_1 .
- **3.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AA_1 =10, AB=5, A_1D_1 =10. Найдите длину диагонали DB_1 .
- **4.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что CC_1 =4, A_1B_1 =1, BC=8. Найдите длину диагонали DB_1 .
- **5.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AA_1 =12, A_1B_1 =12, B_1C_1 =1. Найдите длину диагонали BD_1 .
- **6.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что BB_1 =8, CD=8, AD=14. Найдите длину диагонали BD_1 .
- **7.**В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что CC_1 =6, CD=17, AD=6. Найдите длину диагонали CA_1 .
- **8.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что DD_1 =6, A_1B_1 =12, A_1D_1 =12. Найдите длину диагонали CA_1 .
- **9.** Диагональ куба равна $\sqrt{12}$. Найдите его объём.
- **10.** Диагональ куба равна $\sqrt{3}$. Найдите его объём.
- **11.** Диагональ куба равна $\sqrt{27}$. Найдите его объём.
- **12.** Диагональ куба равна $\sqrt{48}$. Найдите его объём.

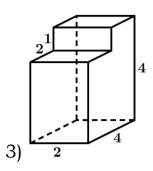


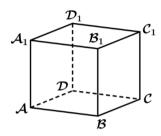




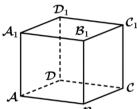

- **13.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=7, AD=3, $AA_1=4$. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C_1 .
- **14.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=11, AD=6, $AA_1=8$. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки A, B и C_1 .
- **15.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=21, AD=20, $AA_1=23$. Найдите площадь сечения, проходящего через вершины A, A_1 и C.
- **16.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=3, AD=4, $AA_1=32$. Найдите площадь сечения, проходящего через вершины C, C_1 и A.
- **17.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=27, AD=36, $AA_1=10$. Найдите площадь сечения, проходящего через вершины D, D_1 и B.
- **18.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=15, AD=8, $AA_1=21$. Найдите площадь сечения, проходящего через вершины B, B_1 и D.
- **19.** Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

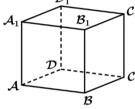


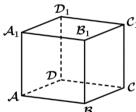


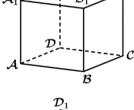


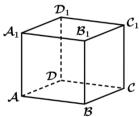
20. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы – прямые).

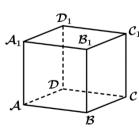




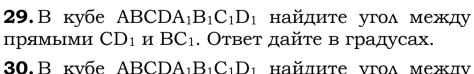

21.В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми ВС1 и А1В1. Ответ дайте в градусах.

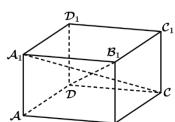

22. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми CD₁ и AD. Ответ дайте в градусах.

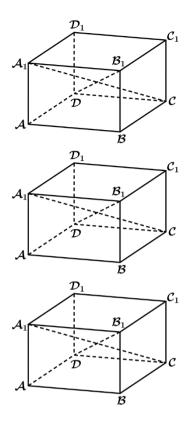

23. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми АС и ВВ₁. Ответ дайте в градусах.


24. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми CB_1 и C_1D_1 . Ответ дайте в градусах.

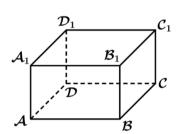
25.В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми CB₁ и AD. Ответ дайте в градусах.

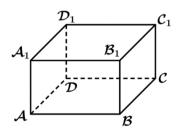


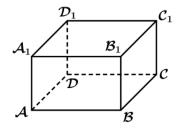

26. В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми AB₁ и CD. Ответ дайте в градусах.


27.В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми BD и A₁D₁. Ответ дайте в градусах. **28.** В кубе $ABCDA_1B_1C_1D_1$ найдите угол между

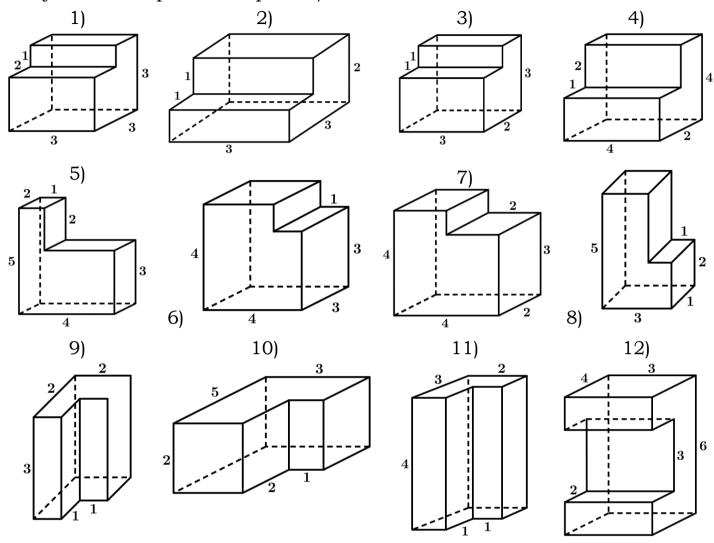
прямыми BA_1 и D_1C_1 . Ответ дайте в градусах.

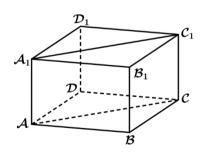


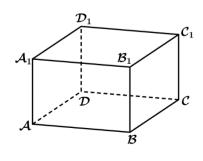

- **30.** В кубе $ABCDA_1B_1C_1D_1$ найдите угол между прямыми АС и ВС1. Ответ дайте в градусах.
- четырёхугольной **31.** B правильной $ABCDA_1B_1C_1D_1$ известно, что BD_1 =2AD. Най-дите угол между диагоналями DB₁ и CA₁. Ответ дайте в градусах.


- **32.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ известно, что BD_1 =2AD. Найдите угол между диагоналями DB_1 и AC_1 . Ответ дайте в градусах.
- **33.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ известно, что D_1B =2AB. Найдите угол между диагоналями BD_1 и CA_1 . Ответ дайте в градусах.
- **34.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ известно, что DB_1 =2CB. Найдите угол между диагоналями BD_1 и AC_1 . Ответ дайте в градусах.

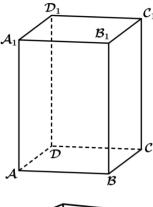
- **35.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=6, AD=8, $AA_1=21$. Найдите синус угла между прямыми A_1D_1 и AC.
- **36.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=6, AD=8, $AA_1=9$. Найдите синус угла между прямыми CD и A_1C_1 .
- **37.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=28, AD=16, $AA_1=12$. Найдите синус угла между прямыми DD_1 и B_1C .

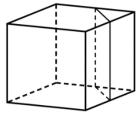


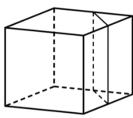

- **38.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=9, AD=12, $AA_1=18$. Найдите синус угла между прямыми A_1D_1 и AC.
- **39.** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=9, AD=12, $AA_1=9$. Найдите синус угла между прямыми DD_1 и B_1C .

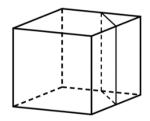


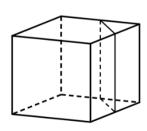
40. В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: AB=8, AD=22, $AA_1=6$. Найдите синус угла между прямыми C_1D и AB.

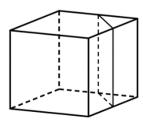

41. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

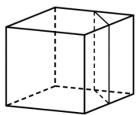


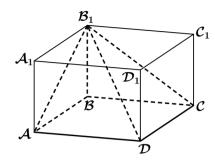


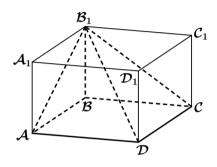


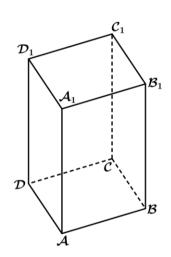

- **42.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=8, BC=5, $AA_1=4$. Найдите объём многогранника, вершинами которого являются точки A, B, C, A_1 , B_1 , C_1 .
- **43.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=7, BC=6, $AA_1=5$. Найдите объём многогранника, вершинами которого являются точки A, B, C, A_1 , B_1 , C_1 .
- **44.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=6, BC=5, AA_1 =4. Найдите объём многогранника, вершинами которого являются точки A, B, C, D, A_1 , B_1 .
- **45.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=5, BC=4, $AA_1=3$. Найдите объём многогранника, вершинами которого являются точки A, B, C, D, A_1 , B_1 .

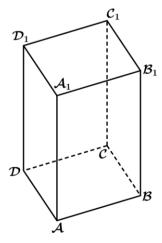




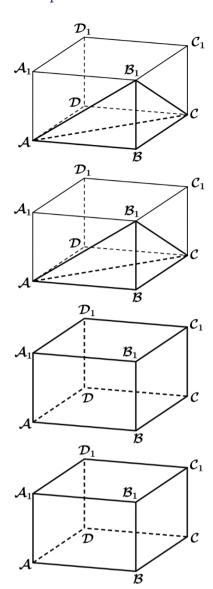


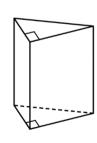


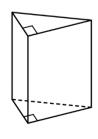


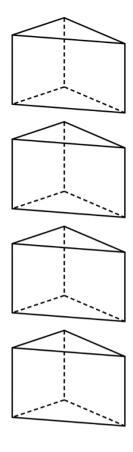


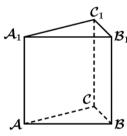
- **46.** Найдите объём многогранника, вершинами которого являются точки A, D_1 , A_1 , B, C_1 , B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=3, AD=4, AA₁=5.
- **47.** Найдите объём многогранника, вершинами которого являются точки A, D_1 , A_1 , B, C_1 , B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=4, AD=3, AA₁=8.
- **48.** Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 1,5. Найдите объём куба.
- **49.** Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 3,5. Найдите объём куба.
- **50.** Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 2,5. Найдите объём куба.
- **51.** (ОБЗ) Объём куба равен 20. Найдите объём треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.
- **52.** (ОБЗ) Объём куба равен 4. Найдите объём треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.
- **53.** (ОБЗ) Объём куба равен 12. Найдите объём треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины.

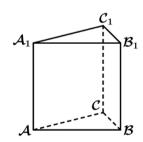


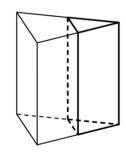



- **54.** (ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=4, BC=7, BB₁=3.
- **55.** (ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=9, BC=3, BB₁=8.
- **56.** (ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=3, BC=6, BB₁=5.
- **57.** (ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, D, B_1 прямоугольного параллелепипеда ABCDA₁B₁C₁D₁, у которого AB=7, BC=8, BB₁=3.
- **58.** Дана правильная четырёхугольная призма ABCDA₁B₁C₁D₁, площадь основания которой равна 6, а боковое ребро равно 7. Найдите объём многогранника, вершинами которого являются точки A, B, C, A₁, B₁.
- **59.** Дана правильная четырёхугольная призма ABCDA₁B₁C₁D₁, площадь основания которой равна 6, а боковое ребро равно 6. Найдите объём многогранника, вершинами которого являются точки A, B, C, A₁, B₁.
- **60.** Дана правильная четырёхугольная призма $ABCDA_1B_1C_1D_1$, площадь основания которой равна 3, а боковое ребро равно 10. Найдите объём многогранника, вершинами которого являются точки A, B, C, A_1 , B_1 .
- **61.** Дана правильная четырёхугольная призма $ABCDA_1B_1C_1D_1$, площадь основания которой равна 5, а боковое ребро равно 9. Найдите объём многогранника, вершинами которого являются точки A, B, C, A_1 , B_1 .

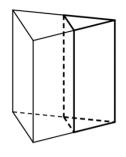

- **62.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=9, BC=7, AA_1 =6. Найдите объём многогранника, вершинами которого являются точки A, B, C, B_1 .
- **63.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=7, BC=6, AA_1 =5. Найдите объём многогранника, вершинами которого являются точки A, B, C, B_1 .
- **64.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=6, BC=5, $AA_1=4$. Найдите объём многогранника, вершинами которого являются точки A, B, C, B_1 .
- **65.** (ОБЗ) В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известно, что AB=9, BC=6, $AA_1=5$. Найдите объём многогранника, вершинами которого являются точки A, B, C, B_1 .

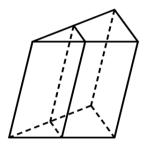

II) Призма

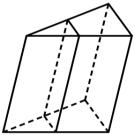


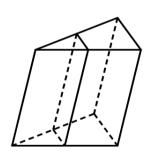


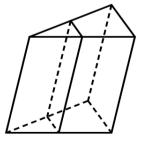
- **66.** Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 2 и 7, боковое ребро призмы равно 6. Найдите объём призмы.
- **67.** Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 3 и 4, боковое ребро призмы равно 4. Найдите объём призмы.
- **68.** Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 5 и 2, боковое ребро призмы равно 12. Найдите объём призмы.
- **69.** Основанием прямой треугольной призмы является прямоугольный треугольник с катетами 10 и 7, боковое ребро призмы равно 4. Найдите объём призмы.

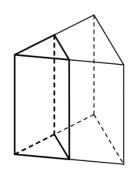


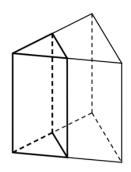


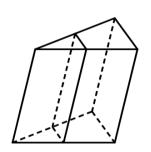


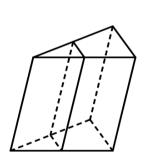


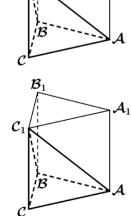

- **70.** Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 4 и 7, объём призмы равен 56. Найдите боковое ребро призмы.
- **71.** Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 6. Объем призмы равен 75. Найдите ее боковое ребро.
- **72.** Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 8 и 3, объём призмы равен 72. Найдите боковое ребро призмы.
- **73.** Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 7 и 6. Объем призмы равен 63. Найдите ее боковое ребро.
- **74.** В правильной треугольной призме $ABCA_1B_1C_1$, все рёбра которой равны 1, найдите угол между прямыми AA_1 и BC_1 .
- **75.** В правильной треугольной призме $ABCA_1B_1C_1$, все рёбра которой равны 2, найдите угол между прямыми BB_1 и AC_1 .
- **76.** В правильной треугольной призме $ABCA_1B_1C_1$, все рёбра которой равны 1, найдите угол между прямыми AA_1 и BC.
- **77.** В правильной треугольной призме $ABCA_1B_1C_1$, все рёбра которой равны 2, найдите угол между прямыми BB_1 и AC.
- **78.** Площадь боковой поверхности треугольной призмы равна 75. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
- **79.** Площадь боковой поверхности треугольной призмы равна 47. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.



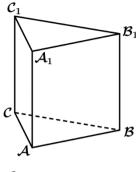


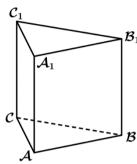


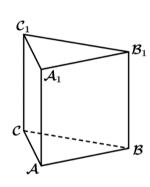


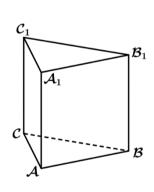


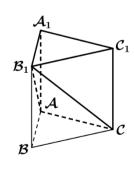
- **80.** Площадь боковой поверхности треугольной призмы равна 28. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
- **81.** Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
- **82.** Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 37. Найдите площадь боковой поверхности исходной призмы.
- **83.** Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 43. Найдите площадь боковой поверхности исходной призмы.
- **84.** Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.
- **85.** Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 22. Найдите площадь боковой поверхности исходной призмы.
- **86.**Через среднюю линию основания треугольной призмы, объём которой равен 48, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.
- **87.**Через среднюю линию основания треугольной призмы, объём которой равен 52, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.







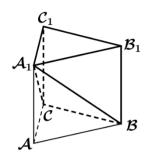


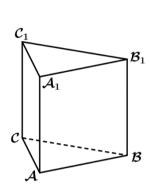

- **88.**Через среднюю линию основания треугольной призмы, объём которой равен 44, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.
- **89.**Через среднюю линию основания треугольной призмы, объём которой равен 56, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.
- **90.**(ОБЗ) Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 7.
- **91.**(ОБЗ) Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 5.
- **92.**(ОБЗ) Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 15.
- **93.**(ОБЗ) Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсечённой треугольной призмы равен 12.
- **94.**(ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, C₁ правильной треугольной призмы ABCA₁B₁C₁, площадь основания которой равна 6, а боковое ребро равно 9.
- **95.**(ОБЗ) Найдите объём многогранника, вершинами которого являются вершины A, B, C, C_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 7, а боковое ребро равно 9.

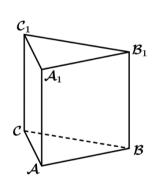
96.(ОБЗ) Найдите объём многогранника, вершинами которого являются точки A, B, C, A_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 5, а боковое ребро равно 6.

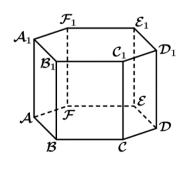
97.(ОБЗ) Найдите объём многогранника, вершинами которого являются точки A, B, C, B_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 7, а боковое ребро равно 3.

98.Найдите объём многогранника, вершинами которого являются точки A, A_1 , B_1 , C_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 2, а боковое ребро равно 6.

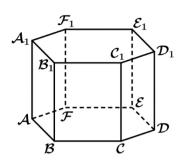

99.Найдите объём многогранника, вершинами которого являются точки A, A₁, B₁, C₁ правильной треугольной призмы ABCA₁B₁C₁, площадь основания которой равна 3, а боковое ребро равно 2.

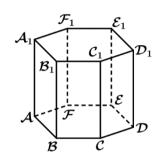

100. Найдите объём многогранника, вершинами которого являются точки C, A_1 , B_1 , C_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 9, а боковое ребро равно 4.

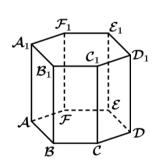

101. Найдите объём многогранника, вершинами которого являются точки B, A_1, B_1, C_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 9, а боковое ребро равно 8.

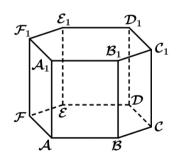

102. (ОБЗ) Дана правильная треугольная призма $ABCA_1B_1C_1$, площадь основания которой равна 8, а боковое ребро равно 6. Найдите объём многогранника, вершинами которого являются точки A, C, A_1, B_1, C_1 .

103. (ОБЗ) Дана правильная треугольная призма $ABCA_1B_1C_1$, площадь основания которой равна 7, а боковое ребро равно 9. Найдите объём многогранника, вершинами которого являются точки A, C, A_1, B_1, C_1 .

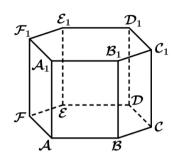


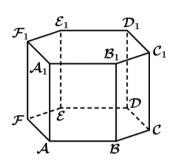


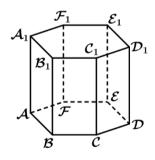




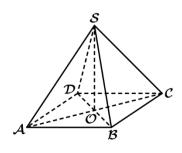
- **104.** (ОБЗ) Дана правильная треугольная призма $ABCA_1B_1C_1$, площадь основания которой равна 4, а боковое ребро равно 6. Найдите объём многогранника, вершинами которого являются точки B, C, A_1 , B_1 , C_1 .
- **105.** (ОБЗ) Дана правильная треугольная призма ABCA₁B₁C₁, площадь основания которой равна 9, а боковое ребро равно 5. Найдите объём многогранника, вершинами которого являются точки B, C, A₁, B₁, C₁.
- **106.** Найдите объём многогранника, вершинами которого являются вершины A, C, A_1, B_1 правильной треугольной призмы $ABCA_1B_1C_1$. Площадь основания призмы равна 9, а боковое ребро равно 4.
- **107.** Найдите объём многогранника, вершинами которого являются вершины A, C, A_1, B_1 правильной треугольной призмы $ABCA_1B_1C_1$. Площадь основания призмы равна 8, а боковое ребро равно 6.
- **108.** Найдите объём многогранника, вершинами которого являются вершины A, C, B_1, C_1 правильной треугольной призмы $ABCA_1B_1C_1$. Площадь основания призмы равна 3, а боковое ребро равно 5.
- **109.**Найдите объём многогранника, вершинами которого являются вершины A, C, B1, C1 правильной треугольной призмы $ABCA_1B_1C_1$. Площадь основания призмы равна 7, а боковое ребро равно 9.
 - **110.**В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 5, найдите угол между прямыми FA и D_1E_1 . Ответ дайте в градусах.
 - **111.**В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 3, найдите угол между прямыми CD и E_1F_1 . Ответ дайте в градусах.

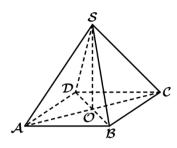


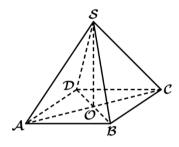


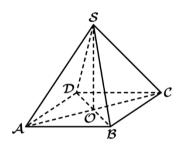


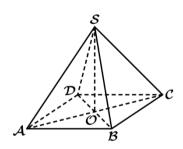
- **112.**В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 2, найдите угол между прямыми ED и A_1E_1 . Ответ дайте в градусах.
- **113.**В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$, все рёбра которой равны 4, найдите угол между прямыми BC и B_1F_1 . Ответ дайте в градусах.
- **114.**Найдите объём многогранника, вершинами которого являются точки A, B, F, A_1 , B_1 , F_1 правильной шестиугольной призмы ABCDEFA₁B₁C₁D₁E₁F₁, площадь основания которой равна 8, а боковое ребро равно 15.
- **115.**Найдите объём многогранника, вершинами которого являются точки A, E, F, A_1 , E_1 , F_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 12, а боковое ребро равно 13.
- **116.**Найдите объём многогранника, вершинами которого являются точки B, C, D, B_1 , C_1 , D_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 6, а боковое ребро равно 12.
- **117.**Найдите объём многогранника, вершинами которого являются точки D, E, F, D_1 , E_1 , F_1 правильной шестиугольной призмы ABCDEFA₁B₁C₁D₁E₁F₁, площадь основания которой равна 8, а боковое ребро равно 9.
- **118.**Найдите объём многогранника, вершинами которого являются вершины A, C, D, F, A₁, C₁, D₁, F₁ правильной шестиугольной призмы ABCDEFA₁B₁C₁D₁E₁F₁, площадь основания которой равна 9, а боковое ребро равно 11.
- **119.**Найдите объём многогранника, вершинами которого являются вершины A, B, D, E, A₁, B₁, D₁, E₁ правильной шестиугольной призмы ABCDEFA₁B₁C₁D₁E₁F₁, площадь основания которой равна 7, а боковое ребро равно 15.

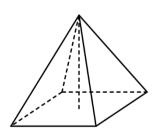


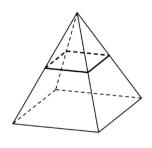


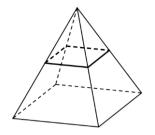

- **120.**Найдите объём многогранника, вершинами которого являются точки F, A_1 , B_1 , C_1 , D_1 , E_1 , F_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 4, а боковое ребро равно 3.
- **121.**Найдите объём многогранника, вершинами которого являются точки D, A_1 , B_1 , C_1 , D_1 , E_1 , F_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 12, а боковое ребро равно 2.
- **122.** Найдите объём многогранника, вершинами которого являются точки A, B, C, D, E, F, B_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 5, а боковое ребро равно 9.
- **123.**Найдите объём многогранника, вершинами которого являются точки A, B, C, D, E, F, D_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 10, а боковое ребро равно 6.
- **124.**Найдите объём многогранника, вершинами которого являются вершины A_1 , B_1 , F_1 , A правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 12, а боковое ребро равно 15.
- **125.**Найдите объём многогранника, вершинами которого являются вершины C, D, E, D_1 правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, площадь основания которой равна 9, а боковое ребро равно 6.

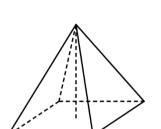

III) Пирамида

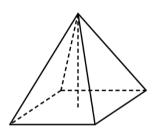


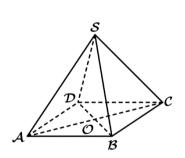

- **126.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SD=41, BD=18. Найдите длину отрезка SO.
- **127.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SA=34, AC=32. Найдите длину отрезка SO.

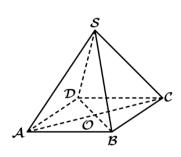


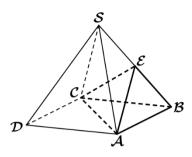


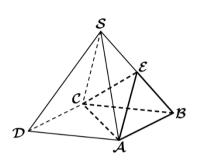


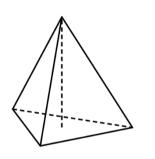


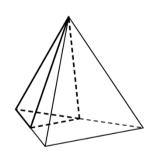


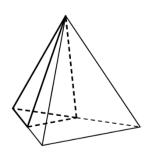

- **128.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SC=35, BD=42. Найдите длину отрезка SO.
- **129.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SD=26, AC=20. Найдите длину отрезка SO.
- **130.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SO=28, BD=42. Найдите длину отрезка SC.
- **131.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SO=15, BD=40. Найдите длину отрезка SA.
- **132.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SO=48, SC=73. Найдите длину отрезка AC.
- **133.** В правильной четырёхугольной пирамиде SABCD с вершиной S точка O центр основания, SO=30, SA=34. Найдите длину отрезка AC.
- **134.** В правильной четырёхугольной пирамиде SABCD точка О центр основания, S вершина, SO=35, SA=37. Найдите длину отрезка BD.
- **135.** В правильной четырёхугольной пирамиде SABCD точка О центр основания, S вершина, SO=48, SC=80. Найдите длину отрезка BD.
 - **136.** В правильной четырёхугольной пирамиде боковое ребро равно 7,5, а сторона основания равна 10. Найдите высоту пирамиды.
 - **137.** В правильной четырёхугольной пирамиде боковое ребро равно 4,5, а сторона основания равна 6. Найдите высоту пирамиды.
 - **138.**В правильной четырёхугольной пирамиде все рёбра равны 2. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.
- **139.**В правильной четырёхугольной пирамиде все рёбра равны 6. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.

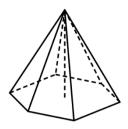


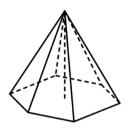


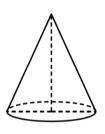


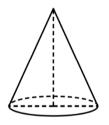


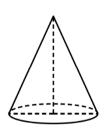

- **140.**В правильной четырёхугольной пирамиде все рёбра равны 8. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.
- **141.**В правильной четырёхугольной пирамиде все рёбра равны 10. Найдите площадь сечения пирамиды плоскостью, проходящей через середины боковых рёбер.
- **142.**В правильной четырёхугольной пирамиде высота равна 3, боковое ребро равно 5. Найдите её объём.
- **143.**В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 4. Найдите её объём.
- **144.** В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 5. Найдите её объём.
- **145.**В правильной четырёхугольной пирамиде высота равна 3, боковое ребро равно 4. Найдите её объём.
- **146.**В правильной четырёхугольной пирамиде SABCD с основанием ABCD боковое ребро SC равно 37, сторона основания равна $35\sqrt{2}$. Найдите объём пирамиды.
- **147.**В правильной четырёхугольной пирамиде SABCD с основанием ABCD боковое ребро SC равно 17, сторона основания равна $15\sqrt{2}$. Найдите объём пирамиды.
- **148.**В правильной четырёхугольной пирамиде SABCD с основанием ABCD боковое ребро SC равно 29, сторона основания равна $21\sqrt{2}$. Найдите объём пирамиды.
- **149.**В правильной четырёхугольной пирамиде SABCD с основанием ABCD боковое ребро SC равно 26, сторона основания равна $10\sqrt{2}$. Найдите объём пирамиды.

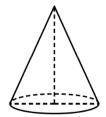




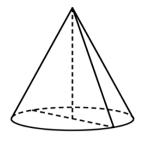

- **150.**Объём правильной четырёхугольной пирамиды SABCD равен 116. Точка Е середина ребра SB. Найдите объём треугольной пирамиды EABC.
- **151.**Объём правильной четырёхугольной пирамиды SABCD равен 152. Точка Е середина ребра SB. Найдите объём треугольной пирамиды EABC.
- **152.**Объём правильной четырёхугольной пирамиды SABCD равен 96. Точка Е середина ребра SB. Найдите объём треугольной пирамиды EABC.
- **153.**Объём правильной четырёхугольной пирамиды SABCD равен 88. Точка Е середина ребра SB. Найдите объём треугольной пирамиды EABC.
- **154.**В правильной треугольной пирамиде боковое ребро равно 7, а сторона основания равна 10,5. Найдите высоту пирамиды.
- **155.**В правильной треугольной пирамиде боковое ребро равно 3, а сторона основания равна 4,5. Найдите высоту пирамиды.
- **156.**Объём треугольной пирамиды равен 78. Через вершину пирамиды и среднюю линию её основания проведена плоскость. Найдите объём отсечённой треугольной пирамиды.
- **157.**Объём треугольной пирамиды равен 94. Через вершину пирамиды и среднюю линию её основания проведена плоскость. Найдите объём отсечённой треугольной пирамиды.
- **158.** Объём треугольной пирамиды равен 66. Через вершину пирамиды и среднюю линию её основания проведена плоскость. Найдите объём отсечённой треугольной пирамиды.
- **159.**Объём треугольной пирамиды равен 82. Через вершину пирамиды и среднюю линию её основания проведена плоскость. Найдите объём отсечённой треугольной пирамиды.

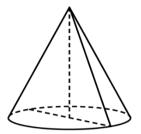


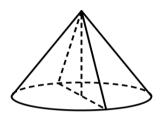


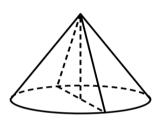

- **160.**В правильной шестиугольной пирамиде боковое ребро равно 6,5, а сторона основания равна 2,5. Найдите высоту пирамиды.
- **161.**В правильной шестиугольной пирамиде боковое ребро равно 7,4, а сторона основания равна 2,4. Найдите высоту пирамиды.
- **162.**В правильной шестиугольной пирамиде боковое ребро равно 8,5, а сторона основания равна 4. Найдите высоту пирамиды.
- **163.**В правильной шестиугольной пирамиде боковое ребро равно 4,1, а сторона основания равна 4. Найдите высоту пирамиды.

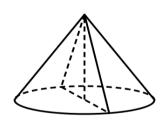
IV) Konyc

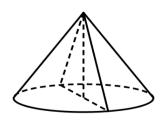


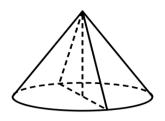


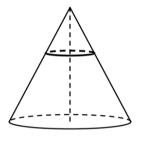


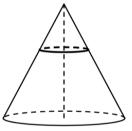


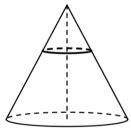

- **164.**Высота конуса равна 12, а диаметр основания равен 70. Найдите длину образующей конуса.
- **165.**Высота конуса равна 16, а диаметр основания равен 60. Найдите длину образующей конуса
- **166.**Высота конуса равна 32, а диаметр основания равен 48. Найдите длину образующей конуса.
- **167.**Высота конуса равна 5, а диаметр основания равен 24. Найдите длину образующей конуса.
- **168.**Высота конуса равна 9, а длина образующей равна 41. Найдите диаметр основания конуса.
- **169.**Высота конуса равна 21, а длина образующей равна 29. Найдите диаметр основания конуса.
- **170.**Высота конуса равна 24, а длина образующей равна 30. Найдите диаметр основания конуса.
- **171.**Высота конуса равна 24, а длина образующей равна 25. Найдите диаметр основания конуса.

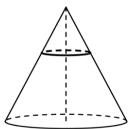


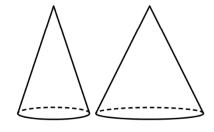


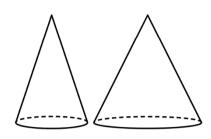


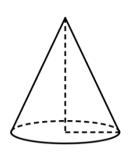


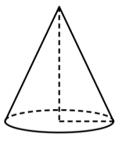

- **172.**Диаметр основания конуса равен 10, а длина образующей 13. Найдите высоту конуса.
- **173.**Диаметр основания конуса равен 14, а длина образующей 25. Найдите высоту конуса
- **174.**Диаметр основания конуса равен 32, а длина образующей 65. Найдите высоту конуса.
- **175.**Диаметр основания конуса равен 18, а длина образующей 41. Найдите высоту конуса.
- **176.**Диаметр основания конуса равен 140, а длина образующей 74. Найдите площадь осевого сечения этого конуса.
- **177.**Диаметр основания конуса равен 90, а длина образующей 51. Найдите площадь осевого сечения этого конуса.
- **178.**Диаметр основания конуса равен 96, а длина образующей 50. Найдите площадь осевого сечения этого конуса.
- **179.**Диаметр основания конуса равен 120, а длина образующей 65. Найдите площадь осевого сечения этого конуса.
- **180.**Высота конуса равна 40, а длина образующей 58. Найдите площадь осевого сечения этого конуса.
- **181.**Высота конуса равна 20, а длина образующей 29. Найдите площадь осевого сечения этого конуса.
- **182.**Высота конуса равна 32, а длина образующей 68. Найдите площадь осевого сечения этого конуса.
- **183.**Высота конуса равна 33, а длина образующей 55. Найдите площадь осевого сечения этого конуса.

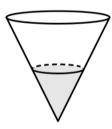


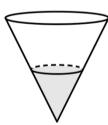


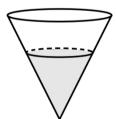


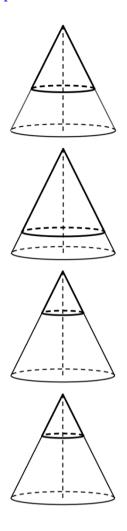


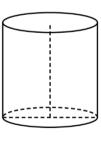


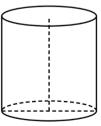


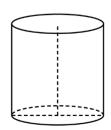

- **184.** Площадь основания конуса равна 4π , высота 3. Найдите площадь осевого сечения этого конуса.
- **185.** Площадь основания конуса равна 36π , высота 10. Найдите площадь осевого сечения этого конуса.
- **186.** Площадь основания конуса равна 9π , высота 6. Найдите площадь осевого сечения этого конуса.
- **187.**Площадь основания конуса равна 25π , высота 8. Найдите площадь осевого сечения этого конуса.
- **188.**Площадь основания конуса равна 48. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 4 и 12, считая от вершины. Найдите площадь сечения конуса этой плоскостью.
- **189.**Площадь основания конуса равна 72. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 6 и 12, считая от вершины. Найдите площадь сечения конуса этой плоскостью.
- **190.**Площадь основания конуса равна 50. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 3 и 12, считая от вершины. Найдите площадь сечения конуса этой плоскостью.
- **191.**Площадь основания конуса равна 49. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 2 и 12, считая от вершины. Найдите площадь сечения конуса этой плоскостью.
- **192.**(ОБЗ) Во сколько раз увеличится объём конуса, если радиус его основания увеличить в 8 раз, а высоту оставить прежней?
- **193.**(ОБЗ) Во сколько раз увеличится объём конуса, если радиус его основания увеличить в 5 раз, а высоту оставить прежней?



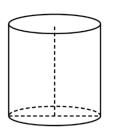


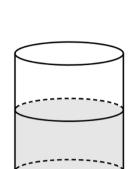


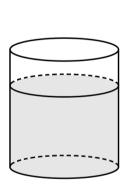

- **194.**(ОБЗ) Во сколько раз увеличится объём конуса, если радиус его основания увеличить в 7 раз, а высоту оставить прежней?
- **195.**(ОБЗ) Во сколько раз увеличится объём конуса, если радиус его основания увеличить в 6 раз, а высоту оставить прежней?
- **196.** (ОБЗ) Во сколько раз уменьшится объём конуса, если его высота уменьшится в 4 раза, а радиус основания останется прежним?
- **197.**(ОБЗ) Во сколько раз уменьшится объём конуса, если его высота уменьшится в 9 раз, а радиус основания останется прежним?
- **198.**(ОБЗ) Во сколько раз уменьшится объём конуса, если его высота уменьшится в 5 раз, а радиус основания останется прежним?
- **199.**(ОБЗ) Во сколько раз уменьшится объём конуса, если его высота уменьшится в 8 раз, а радиус основания останется прежним?
- **200.**В сосуде, имеющем форму конуса, уровень жидкости достигает $\frac{1}{4}$ высоты. Объём жидкости равен 1 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
- **201.**В сосуде, имеющем форму конуса, уровень жидкости достигает $\frac{1}{2}$ высоты. Объём жидкости равен 25 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
- **202.**В сосуде, имеющем форму конуса, уровень жидкости достигает $\frac{1}{3}$ высоты. Объём жидкости равен 12 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
- **203.**В сосуде, имеющем форму конуса, уровень жидкости достигает $\frac{2}{3}$ высоты. Объём жидкости равен 144 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

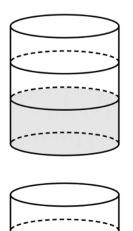


- **204.**Площадь полной поверхности конуса равна 35. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 3:2, считая от вершины конуса. Найдите площадь полной поверхности отсечённого конуса
- **205.**Площадь полной поверхности конуса равна 32,5. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 4:1, считая от вершины конуса. Найдите площадь полной поверхности отсечённого конуса.
- **206.** Площадь полной поверхности конуса равна 15. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 2:3, считая от вершины конуса. Найдите площадь полной поверхности отсечённого конуса.
- **207.**Площадь полной поверхности конуса равна 27,2. Параллельно основанию конуса проведено сечение, делящее высоту в отношении 1:3, считая от вершины конуса. Найдите площадь полной поверхности отсечённого конуса.

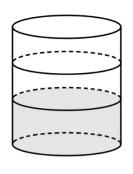

<u>V) Цилиндр</u>

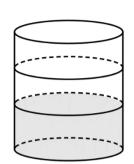




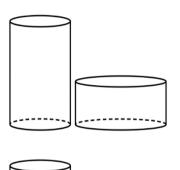


- **208.**Площадь боковой поверхности цилиндра равна $20\,\pi$, а высота равна 4. Найдите диаметр основания.
- **209.**Площадь боковой поверхности цилиндра равна 40π , а высота равна 10. Найдите диаметр основания.
- **210.**Площадь боковой поверхности цилиндра равна 30π , а высота равна 5. Найдите диаметр основания.
- **211.**Площадь боковой поверхности цилиндра равна 35π , а высота равна 7. Найдите диаметр основания.
- **212.**Площадь боковой поверхности цилиндра равна 12π , а диаметр основания равен 6. Найдите высоту цилиндра
- **213.**Площадь боковой поверхности цилиндра равна 24π , а диаметр основания равен 8. Найдите высоту цилиндра.

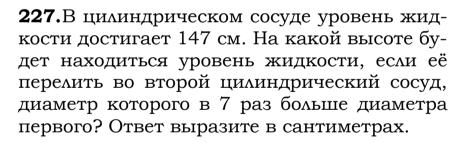


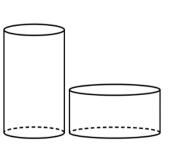


- **214.**Площадь боковой поверхности цилиндра равна $21\,\pi$, а диаметр основания равен 3. Найдите высоту цилиндра
- **215.**Площадь боковой поверхности цилиндра равна 16π , а диаметр основания равен 4. Найдите высоту цилиндра.
- **216.**В цилиндрический сосуд налили 2800 см³ воды. Уровень жидкости оказался равным 16 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 13 см. Найдите объём детали. Ответ выразите см³.
- **217.**В цилиндрический сосуд налили 1200 см³ воды. Уровень жидкости оказался равным 12 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см. Найдите объём детали. Ответ выразите см³.
- **218.**В цилиндрический сосуд налили 1000 см³ воды. Уровень воды оказался равным 8 см. В воду полностью погрузили деталь. При этом уровень воды в сосуде поднялся на 3 см. Найдите объём детали. Ответ дайте в см³.
- **219.**В цилиндрический сосуд налили 1400 см³ воды. Уровень воды оказался равным 10 см. В воду полностью погрузили деталь. При этом уровень воды в сосуде поднялся на 4 см. Найдите объём детали. Ответ дайте в см³.
- **220.**В цилиндрический сосуд налили 500 см³ воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,2 раза. Найдите объём детали. Ответ выразите см³.
- **221.**В цилиндрический сосуд налили 700 см³ воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,4 раза. Найдите объём детали. Ответ выразите см³.
- **222.**В цилиндрический сосуд, в котором находится 8 дм³ воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,5 раза. Чему равен объём детали? Ответ выразите в дм³.

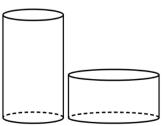


223.В цилиндрический сосуд, в котором находится 4 дм³ воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 2,5 раза. Чему равен объём детали? Ответ выразите в дм³.

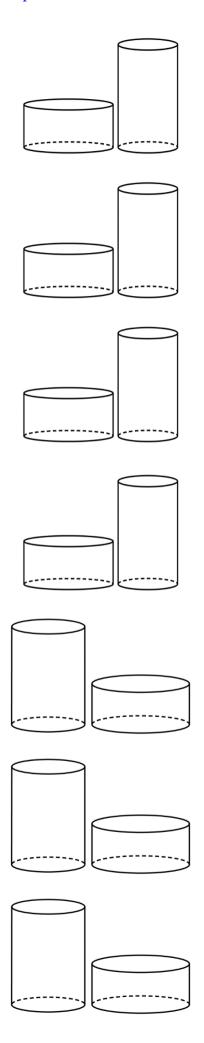


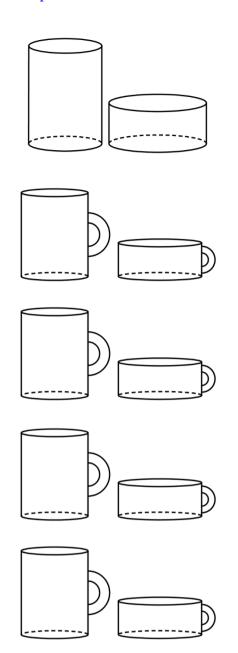

224.В цилиндрический сосуд, в котором находится 10 дм³ воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,6 раза. Чему равен объём детали? Ответ выразите в дм³.

225.В цилиндрический сосуд, в котором находится 5 дм³ воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,8 раза. Чему равен объём детали? Ответ выразите в дм³.



226.В цилиндрическом сосуде уровень жидкости достигает 112 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

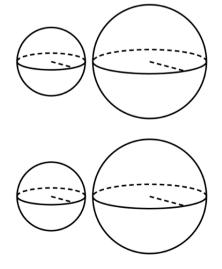



228.В цилиндрическом сосуде уровень жидкости достигает 405 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 9 раз больше диаметра первого? Ответ выразите в сантиметрах.

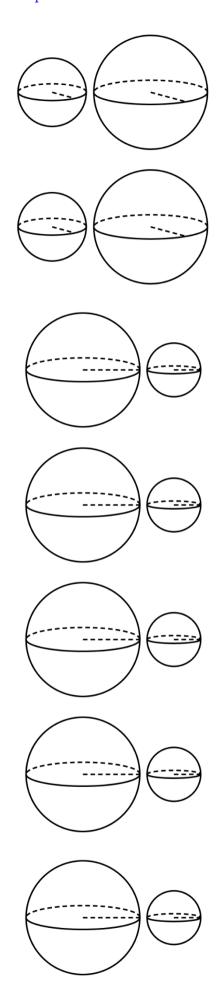
229.В цилиндрическом сосуде уровень жидкости достигает 150 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз больше диаметра первого? Ответ выразите в сантиметрах.

- **230.**В цилиндрическом сосуде уровень жидкости достигает 2 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 6 раз меньше диаметра первого? Ответ выразите в сантиметрах.
- **231.**В цилиндрическом сосуде уровень жидкости достигает 5 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза меньше диаметра первого? Ответ выразите в сантиметрах.
- **232.**В цилиндрическом сосуде уровень жидкости достигает 6 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз меньше диаметра первого? Ответ выразите в сантиметрах.
- **233.**В цилиндрическом сосуде уровень жидкости достигает 3 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза меньше диаметра первого? Ответ выразите в сантиметрах.
- **234.** (ОБЗ) Дано два цилиндра. Объём первого цилиндра равен 15. У второго цилиндра высота в 3 раза меньше, а радиус основания в 2 раза больше, чем у первого. Найдите объём второго цилиндра.
- **235.**(ОБЗ) Дано два цилиндра. Объём первого цилиндра равен 20. У второго цилиндра высота в 4 раза меньше, а радиус основания в 3 раза больше, чем у первого. Найдите объём второго цилиндра.
- **236.** (ОБЗ) Дано два цилиндра. Объём первого цилиндра равен 18. У второго цилиндра высота в 3 раза меньше, а радиус основания в 3 раза больше, чем у первого. Найдите объём второго цилиндра.

237.(ОБЗ) Дано два цилиндра. Объём первого цилиндра равен 16. У второго цилиндра высота в 2 раза меньше, а радиус основания в 2 раза больше, чем у первого. Найдите объём второго цилиндра.


238.Первая цилиндрическая кружка вдвое выше второй, зато вторая в три раза шире. Найдите отношение объёма второй кружки к объёму первой.

239.Первая цилиндрическая кружка вдвое выше второй, а вторая в четыре раза шире первой. Найдите отношение объёма второй кружки к объёму первой.


240.Первая цилиндрическая кружка в четыре с половиной раза выше второй, а вторая в полтора раза шире первой. Найдите отношение объёма второй кружки к объёму первой.

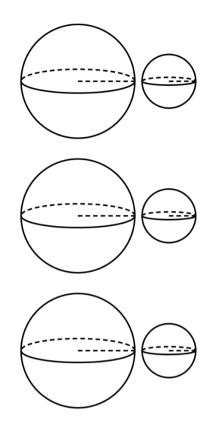
241.Первая цилиндрическая кружка в полтора раза выше второй, а вторая в три раза шире первой. Найдите отношение объёма второй кружки к объёму первой.

VI) Шар

- **242.** Радиусы двух шаров равны 9 и 12. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.
- **243.** Радиусы двух шаров равны 16 и 30. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.

244. Радиусы двух шаров равны 7 и 24. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.

245.Радиусы двух шаров равны 21 и 72. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.

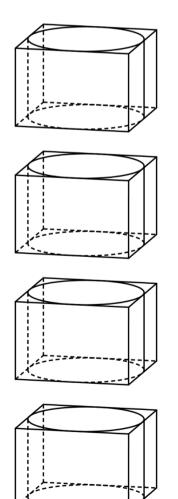

246.Дано два шара. Радиус первого шара в 2 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

247.Дано два шара. Радиус первого шара в 3 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

248.Дано два шара. Радиус первого шара в 8 раз больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

249.Дано два шара. Радиус первого шара в 7 раз больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?

250.Дано два шара. Радиус первого шара в 9 раз больше радиуса второго. Во сколько раз объём первого шара больше объёма второго?

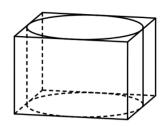


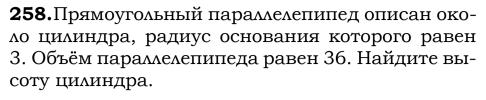
251.Дано два шара. Радиус первого шара в 6 раз больше радиуса второго. Во сколько раз объём первого шара больше объёма второго?

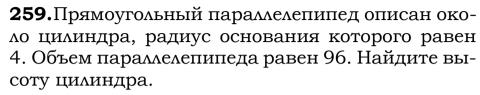
252.Дано два шара. Радиус первого шара в 5 раз больше радиуса второго. Во сколько раз объём первого шара больше объёма второго?

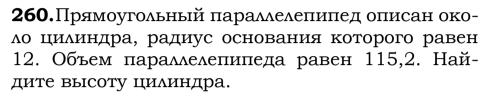
253.Дано два шара. Радиус первого шара в 8 раз больше радиуса второго. Во сколько раз объём первого шара больше объёма второго?

VII) Вписанный и описанный цилиндр

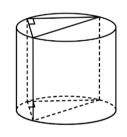


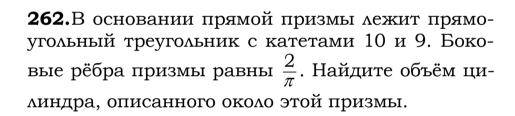

254.Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 2. Найдите объём параллелепипеда.

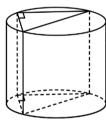

255.Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 4. Найдите объём параллелепипеда.

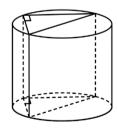

256.Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1,5. Найдите объем параллелепипеда.

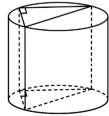
257.Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 2,5. Найдите объем параллелепипеда.

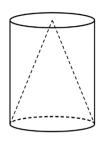


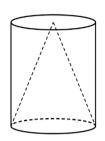


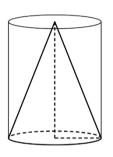


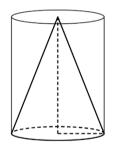

261.Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 8. Объем параллелепипеда равен 102,4. Найдите высоту цилиндра.

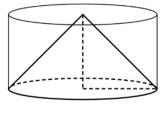


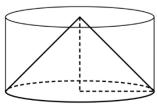

263.В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 8. Боковые ребра призмы равны $\frac{6}{\pi}$. Найдите объем цилиндра, описанного около этой призмы.

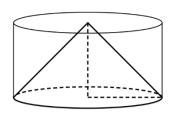


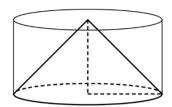

264.В основании прямой призмы лежит прямоугольный треугольник с катетами 20 и 21. Боковые ребра призмы равны $\frac{4}{\pi}$. Найдите объем цилиндра, описанного около этой призмы.

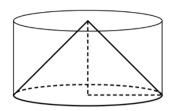


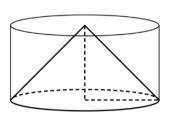

265.В основании прямой призмы лежит прямоугольный треугольник с катетами 7 и 24. Боковые ребра призмы равны $\frac{8}{\pi}$. Найдите объем цилиндра, описанного около этой призмы.

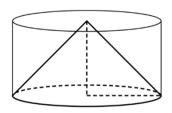


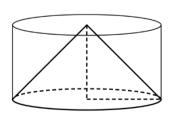


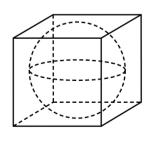


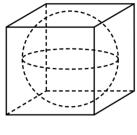


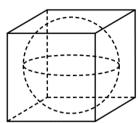


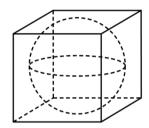

- **266.** (ОБЗ) Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 162. Найдите объём конуса.
- **267.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 252. Найдите объём конуса.
- **268.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 12. Найдите объём конуса.
- **269.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Объём цилиндра равен 18. Найдите объём конуса.
- **270.** Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 45. Найдите объём цилиндра.
- **271.**Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 36. Найдите объём цилиндра.
- **272.** Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 57. Найдите объём цилиндра.
- **273.** Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 48. Найдите объём цилиндра.
- **274.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна $3\sqrt{2}$. Найдите площадь боковой поверхности цилиндра.
- **275.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна $7\sqrt{2}$. Найдите площадь боковой поверхности цилиндра.

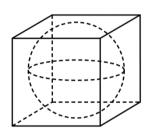


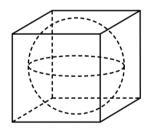


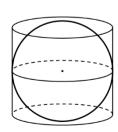


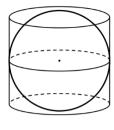

- **276.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна $9\sqrt{2}$. Найдите площадь боковой поверхности цилиндра.
- **277.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна $6\sqrt{2}$. Найдите площадь боковой поверхности цилиндра.
- **278.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $5\sqrt{2}$. Найдите площадь боковой поверхности конуса.
- **279.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $11\sqrt{2}$. Найдите площадь боковой поверхности конуса.
- **280.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $13\sqrt{2}$. Найдите площадь боковой поверхности конуса.
- **281.**(ОБЗ) Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна $8\sqrt{2}$. Найдите площадь боковой поверхности конуса.

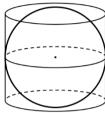

VIII) Вписанная и описанная сфера

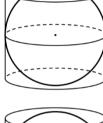


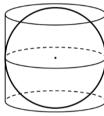

- **282.**В куб с ребром 3 вписан шар. Найдите объём этого шара, делённый на π .
- **283.**В куб с ребром 9 вписан шар. Найдите объём этого шара, делённый на π .

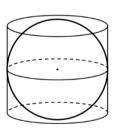


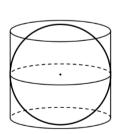


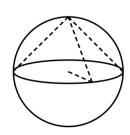


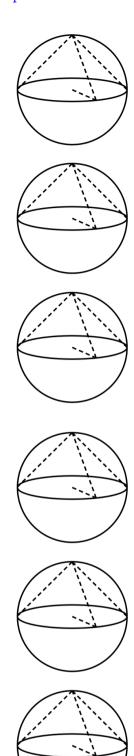


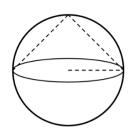


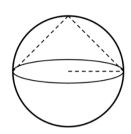

- **284.**В куб с ребром 12 вписан шар. Найдите объём этого шара, делённый на π .
- **285.**В куб с ребром 18 вписан шар. Найдите объём этого шара, делённый на π .
- **286.**Куб описан около сферы радиуса 3. Найдите объём куба.
- **287.**Куб описан около сферы радиуса 4. Найдите объём куба.
- **288.**Куб описан около сферы радиуса 2. Найдите объём куба.
- **289.**Куб описан около сферы радиуса 5. Найдите объём куба.
- **290.** Прямоугольный параллелепипед описан около сферы радиуса 7,5. Найдите его объём.
- **291.** Прямоугольный параллелепипед описан около сферы радиуса 8,5. Найдите его объём.
- 292. Прямоугольный параллелепипед описан около сферы радиуса 16. Найдите его объём.
- **293.** Прямоугольный параллелепипед описан около сферы радиуса 17. Найдите его объём.
- **294.** Шар вписан в цилиндр. Площадь поверхности шара равна 29. Найдите площадь полной поверхности цилиндра.
- **295.** Шар вписан в цилиндр. Площадь поверхности шара равна 21. Найдите площадь полной поверхности цилиндра.
- **296.** Шар вписан в цилиндр. Площадь поверхности шара равна 48. Найдите площадь полной поверхности цилиндра.
- **297.** Шар вписан в цилиндр. Площадь поверхности шара равна 56. Найдите площадь полной поверхности цилиндра.

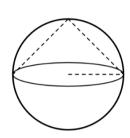


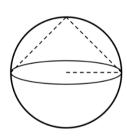









- **298.** (ОБЗ) Шар, объём которого равен 18, вписан в цилиндр. Найдите объём цилиндра.
- **299.** (ОБЗ) Шар, объём которого равен 62, вписан в цилиндр. Найдите объём цилиндра.
- **300.** (ОБЗ) Шар, объём которого равен 50, вписан в цилиндр. Найдите объём цилиндра.
- **301.** (ОБЗ) Шар, объём которого равен 22, вписан в цилиндр. Найдите объём цилиндра.
- **302.** (ОБЗ) Цилиндр, объём которого равен 42, описан около шара. Найдите объём шара.
- **303.** (ОБЗ) Цилиндр, объём которого равен 18, описан около шара. Найдите объём шара.
- **304.** (ОБЗ) Цилиндр, объём которого равен 36, описан около шара. Найдите объём шара.
- **305.** (ОБЗ) Цилиндр, объём которого равен 48, описан около шара. Найдите объём шара.
- **306.** (ОБЗ) Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 30. Найдите площадь поверхности шара.
- **307.** (ОБЗ) Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 42. Найдите площадь поверхности шара.
- **308.** (ОБЗ) Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 24. Найдите площадь поверхности шара.
- **309.** (ОБЗ) Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 18. Найдите площадь поверхности шара.
- **310.** Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен $23\sqrt{2}$. Найдите образующую конуса.



- **311.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен $10\sqrt{2}$. Найдите образующую конуса.
- **312.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен $26\sqrt{2}$. Найдите образующую конуса.
- **313.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен $31\sqrt{2}$. Найдите образующую конуса.
- **314.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Образующая конуса равна $29\sqrt{2}$. Найдите радиус сферы.
- **315.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Образующая конуса равна $36\sqrt{2}$. Найдите радиус сферы.
- **316.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Образующая конуса равна $85\sqrt{2}$. Найдите радиус сферы.
- **317.**Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Образующая конуса равна $94\sqrt{2}$. Найдите радиус сферы.

- **318.** (ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 12. Найдите объём шара.
- **319.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 20. Найдите объём шара.
- **320.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 40. Найдите объём шара.
- **321.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 48. Найдите объём шара.
- **322.** (ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 24. Найдите объём конуса.
- **323.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 36. Найдите объём конуса.
- **324.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 44. Найдите объём конуса.
- **325.**(ОБЗ) Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 60. Найдите объём конуса.